Equilateral Triangulations and The Postcritical Dynamics of Meromorphic Functions
Abstract
We show that any dynamics on any planar set $S$ discrete in some domain $D$ can be realized by the postcritical dynamics of a function holomorphic in $D$, up to a small perturbation. A key step in the proof, and a result of independent interest, is that any planar domain $D$ can be equilaterally triangulated with triangles whose diameters $\rightarrow0$ (at any prescribed rate) near $\partial D$.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2022
- DOI:
- 10.48550/arXiv.2202.02410
- arXiv:
- arXiv:2202.02410
- Bibcode:
- 2022arXiv220202410B
- Keywords:
-
- Mathematics - Dynamical Systems;
- Mathematics - Complex Variables;
- 30D05;
- 37F10;
- 30D30