Low-Rank and Row-Sparse Decomposition for Joint DOA Estimation and Distorted Sensor Detection
Abstract
Distorted sensors could occur randomly and may lead to the breakdown of a sensor array system. We consider an array model within which a small number of sensors are distorted by unknown sensor gain and phase errors. With such an array model, the problem of joint direction-of-arrival (DOA) estimation and distorted sensor detection is investigated and the problem is formulated under the framework of low-rank and row-sparse decomposition. We derive an iteratively reweighted least squares (IRLS) algorithm to solve the resulting problem in both noiseless and noisy cases. The convergence property of the IRLS algorithm is analyzed by means of the monotonicity and boundedness of the objective function. Extensive simulations are conducted regarding parameter selection, convergence speed, computational complexity, and performances of DOA estimation as well as distorted sensor detection. Even though the IRLS algorithm is slightly worse than the alternating direction method of multipliers in detecting the distorted sensors, the results show that our approach outperforms several state-of-the-art techniques in terms of convergence speed, computational cost, and DOA estimation performance.
- Publication:
-
IEEE Transactions on Aerospace Electronic Systems
- Pub Date:
- August 2023
- DOI:
- 10.1109/TAES.2023.3241886
- arXiv:
- arXiv:2202.01140
- Bibcode:
- 2023ITAES..59.4763H
- Keywords:
-
- Electrical Engineering and Systems Science - Signal Processing
- E-Print:
- This work has been submitted to the IEEE for possible publication