Superlinear elliptic inequalities on weighted graphs
Abstract
Let $(V,\mu)$ be an infinite, connected, locally finite weighted graph. We study the problem of existence or non-existence of positive solutions to a semi-linear elliptic inequality \begin{equation*} \Delta u+u^{\sigma}\leq0\quad \text{in}\,\,V, \end{equation*} where $\Delta$ is the standard graph Laplacian on $V$ and $\sigma>0$. For $\sigma\in(0,1]$, the inequality admits no nontrivial positive solution. For $\sigma>1$, assuming condition \textbf{($p_0$)} on $(V,\mu)$, we obtain a sharp condition for nonexistence of positive solutions in terms of the volume growth of the graph, that is \begin{equation*} \mu(o,n)\lesssim n^{\frac{2\sigma}{\sigma-1}}(\ln n)^{\frac{1}{\sigma-1}} \end{equation*} for some $o\in V$ and all large enough $n$. For any $\varepsilon>0$, we can construct an example on a homogeneous tree $\mathbb T_N$ with $\mu(o,n)\approx n^{\frac{2\sigma}{\sigma-1}}(\ln n)^{\frac{1}{\sigma-1}+\varepsilon}$, and a solution to the inequality on $(\mathbb T_N,\mu)$ to illustrate the sharpness of $\frac{2\sigma}{\sigma-1}$ and $\frac{1}{\sigma-1}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2022
- DOI:
- 10.48550/arXiv.2201.06397
- arXiv:
- arXiv:2201.06397
- Bibcode:
- 2022arXiv220106397G
- Keywords:
-
- Mathematics - Analysis of PDEs