Lower Bounds for Sparse Oblivious Subspace Embeddings
Abstract
An oblivious subspace embedding (OSE), characterized by parameters $m,n,d,\epsilon,\delta$, is a random matrix $\Pi\in \mathbb{R}^{m\times n}$ such that for any $d$-dimensional subspace $T\subseteq \mathbb{R}^n$, $\Pr_\Pi[\forall x\in T, (1-\epsilon)\|x\|_2 \leq \|\Pi x\|_2\leq (1+\epsilon)\|x\|_2] \geq 1-\delta$. For $\epsilon$ and $\delta$ at most a small constant, we show that any OSE with one nonzero entry in each column must satisfy that $m = \Omega(d^2/(\epsilon^2\delta))$, establishing the optimality of the classical Count-Sketch matrix. When an OSE has $1/(9\epsilon)$ nonzero entries in each column, we show it must hold that $m = \Omega(\epsilon^{O(\delta)} d^2)$, improving on the previous $\Omega(\epsilon^2 d^2)$ lower bound due to Nelson and Nguyen (ICALP 2014).
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2021
- DOI:
- 10.48550/arXiv.2112.10987
- arXiv:
- arXiv:2112.10987
- Bibcode:
- 2021arXiv211210987L
- Keywords:
-
- Computer Science - Data Structures and Algorithms;
- Computer Science - Computational Geometry;
- Computer Science - Discrete Mathematics;
- 68R12;
- F.2.1;
- G.2;
- F.2.3