Optimal control of a heroin epidemic mathematical model
Abstract
A heroin epidemic mathematical model with prevention information and treatment, as control interventions, is analyzed, assuming that an individual's behavioral response depends on the spreading of information about the effects of heroin. Such information creates awareness, which helps individuals to participate in preventive education and self-protective schemes with additional efforts. We prove that the basic reproduction number is the threshold of local stability of a drug-free and endemic equilibrium. Then, we formulate an optimal control problem to minimize the total number of drug users and the cost associated with prevention education measures and treatment. We prove existence of an optimal control and derive its characterization through Pontryagin's maximum principle. The resulting optimality system is solved numerically. We observe that among all possible strategies, the most effective and cost-less is to implement both control policies.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2021
- DOI:
- arXiv:
- arXiv:2111.05906
- Bibcode:
- 2021arXiv211105906T
- Keywords:
-
- Mathematics - Optimization and Control;
- 34D20;
- 49J15;
- 92D30
- E-Print:
- This is a preprint of a paper whose final and definite form is published by 'Optimization' (ISSN 0233-1934). Submitted 31-Mar-2021