The Parallel Reversible Pebbling Game: Analyzing the Post-Quantum Security of iMHFs
Abstract
The classical (parallel) black pebbling game is a useful abstraction which allows us to analyze the resources (space, space-time, cumulative space) necessary to evaluate a function $f$ with a static data-dependency graph $G$. Of particular interest in the field of cryptography are data-independent memory-hard functions $f_{G,H}$ which are defined by a directed acyclic graph (DAG) $G$ and a cryptographic hash function $H$. The pebbling complexity of the graph $G$ characterizes the amortized cost of evaluating $f_{G,H}$ multiple times as well as the total cost to run a brute-force preimage attack over a fixed domain $\mathcal{X}$, i.e., given $y \in \{0,1\}^*$ find $x \in \mathcal{X}$ such that $f_{G,H}(x)=y$. While a classical attacker will need to evaluate the function $f_{G,H}$ at least $m=|\mathcal{X}|$ times a quantum attacker running Grover's algorithm only requires $\mathcal{O}(\sqrt{m})$ blackbox calls to a quantum circuit $C_{G,H}$ evaluating the function $f_{G,H}$. Thus, to analyze the cost of a quantum attack it is crucial to understand the space-time cost (equivalently width times depth) of the quantum circuit $C_{G,H}$. We first observe that a legal black pebbling strategy for the graph $G$ does not necessarily imply the existence of a quantum circuit with comparable complexity -- in contrast to the classical setting where any efficient pebbling strategy for $G$ corresponds to an algorithm with comparable complexity evaluating $f_{G,H}$. Motivated by this observation we introduce a new parallel reversible pebbling game which captures additional restrictions imposed by the No-Deletion Theorem in Quantum Computing. We apply our new reversible pebbling game to analyze the reversible space-time complexity of several important graphs: Line Graphs, Argon2i-A, Argon2i-B, and DRSample. (See the paper for the full abstract.)
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2021
- DOI:
- 10.48550/arXiv.2110.04191
- arXiv:
- arXiv:2110.04191
- Bibcode:
- 2021arXiv211004191B
- Keywords:
-
- Quantum Physics;
- Computer Science - Computational Complexity;
- Computer Science - Cryptography and Security
- E-Print:
- 42 pages, 5 figures