CDRNet: Accurate Cup-to-Disc Ratio Measurement with Tight Bounding Box Supervision in Fundus Photography Using Deep Learning
Abstract
The cup-to-disc ratio (CDR) is one of the most significant indicator for glaucoma diagnosis. Different from the use of costly fully supervised learning formulation with pixel-wise annotations in the literature, this study investigates the feasibility of accurate CDR measurement in fundus images using only tight bounding box supervision. For this purpose, we develop a two-task network named as CDRNet for accurate CDR measurement, one for weakly supervised image segmentation, and the other for bounding-box regression. The weakly supervised image segmentation task is implemented based on generalized multiple instance learning formulation and smooth maximum approximation, and the bounding-box regression task outputs class-specific bounding box prediction in a single scale at the original image resolution. To get accurate bounding box prediction, a class-specific bounding-box normalizer and an expected intersection-over-union are proposed. In the experiments, the proposed approach was evaluated by a testing set with 1200 images using CDR error and $F_1$ score for CDR measurement and dice coefficient for image segmentation. A grader study was conducted to compare the performance of the proposed approach with those of individual graders. The experimental results indicate that the proposed approach outperforms the state-of-the-art performance obtained from the fully supervised image segmentation (FSIS) approach using pixel-wise annotation for CDR measurement. Its performance is also better than those of individual graders. In addition, the proposed approach gets performance close to the state-of-the-art obtained from FSIS and the performance of individual graders for optic cup and disc segmentation. The codes are available at \url{https://github.com/wangjuan313/CDRNet}.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2021
- DOI:
- arXiv:
- arXiv:2110.00943
- Bibcode:
- 2021arXiv211000943W
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Artificial Intelligence
- E-Print:
- 18 pages, 7 figures, 8 tables, Multimedia Tools and Applications