Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization Approach
Abstract
We study the Sparse Plus Low-Rank decomposition problem (SLR), which is the problem of decomposing a corrupted data matrix into a sparse matrix of perturbations plus a low-rank matrix containing the ground truth. SLR is a fundamental problem in Operations Research and Machine Learning which arises in various applications, including data compression, latent semantic indexing, collaborative filtering, and medical imaging. We introduce a novel formulation for SLR that directly models its underlying discreteness. For this formulation, we develop an alternating minimization heuristic that computes high-quality solutions and a novel semidefinite relaxation that provides meaningful bounds for the solutions returned by our heuristic. We also develop a custom branch-and-bound algorithm that leverages our heuristic and convex relaxations to solve small instances of SLR to certifiable (near) optimality. Given an input $n$-by-$n$ matrix, our heuristic scales to solve instances where $n=10000$ in minutes, our relaxation scales to instances where $n=200$ in hours, and our branch-and-bound algorithm scales to instances where $n=25$ in minutes. Our numerical results demonstrate that our approach outperforms existing state-of-the-art approaches in terms of rank, sparsity, and mean-square error while maintaining a comparable runtime.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2021
- DOI:
- 10.48550/arXiv.2109.12701
- arXiv:
- arXiv:2109.12701
- Bibcode:
- 2021arXiv210912701B
- Keywords:
-
- Statistics - Machine Learning;
- Computer Science - Machine Learning;
- Mathematics - Optimization and Control
- E-Print:
- Journal of Machine Learning Research, 24(267), 1-51 (2023)