Delay-aware Robust Control for Safe Autonomous Driving
Abstract
With the advancement of affordable self-driving vehicles using complicated nonlinear optimization but limited computation resources, computation time becomes a matter of concern. Other factors such as actuator dynamics and actuator command processing cost also unavoidably cause delays. In high-speed scenarios, these delays are critical to the safety of a vehicle. Recent works consider these delays individually, but none unifies them all in the context of autonomous driving. Moreover, recent works inappropriately consider computation time as a constant or a large upper bound, which makes the control either less responsive or over-conservative. To deal with all these delays, we present a unified framework by 1) modeling actuation dynamics, 2) using robust tube model predictive control, 3) using a novel adaptive Kalman filter without assuminga known process model and noise covariance, which makes the controller safe while minimizing conservativeness. On onehand, our approach can serve as a standalone controller; on theother hand, our approach provides a safety guard for a high-level controller, which assumes no delay. This can be used for compensating the sim-to-real gap when deploying a black-box learning-enabled controller trained in a simplistic environment without considering delays for practical vehicle systems.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2021
- DOI:
- arXiv:
- arXiv:2109.07101
- Bibcode:
- 2021arXiv210907101K
- Keywords:
-
- Computer Science - Robotics
- E-Print:
- Accepted at IV 2022