X-GOAL: Multiplex Heterogeneous Graph Prototypical Contrastive Learning
Abstract
Graphs are powerful representations for relations among objects, which have attracted plenty of attention. A fundamental challenge for graph learning is how to train an effective Graph Neural Network (GNN) encoder without labels, which are expensive and time consuming to obtain. Contrastive Learning (CL) is one of the most popular paradigms to address this challenge, which trains GNNs by discriminating positive and negative node pairs. Despite the success of recent CL methods, there are still two under-explored problems. First, how to reduce the semantic error introduced by random topology based data augmentations. Traditional CL defines positive and negative node pairs via the node-level topological proximity, which is solely based on the graph topology regardless of the semantic information of node attributes, and thus some semantically similar nodes could be wrongly treated as negative pairs. Second, how to effectively model the multiplexity of the real-world graphs, where nodes are connected by various relations and each relation could form a homogeneous graph layer. To solve these problems, we propose a novel multiplex heterogeneous graph prototypical contrastive leaning (X-GOAL) framework to extract node embeddings. X-GOAL is comprised of two components: the GOAL framework, which learns node embeddings for each homogeneous graph layer, and an alignment regularization, which jointly models different layers by aligning layer-specific node embeddings. Specifically, the GOAL framework captures the node-level information by a succinct graph transformation technique, and captures the cluster-level information by pulling nodes within the same semantic cluster closer in the embedding space. The alignment regularization aligns embeddings across layers at both node and cluster levels. We evaluate X-GOAL on various real-world datasets and downstream tasks to demonstrate its effectiveness.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2021
- DOI:
- arXiv:
- arXiv:2109.03560
- Bibcode:
- 2021arXiv210903560J
- Keywords:
-
- Computer Science - Machine Learning
- E-Print:
- Accepted by CIKM'2022