Instance-wise Hard Negative Example Generation for Contrastive Learning in Unpaired Image-to-Image Translation
Abstract
Contrastive learning shows great potential in unpaired image-to-image translation, but sometimes the translated results are in poor quality and the contents are not preserved consistently. In this paper, we uncover that the negative examples play a critical role in the performance of contrastive learning for image translation. The negative examples in previous methods are randomly sampled from the patches of different positions in the source image, which are not effective to push the positive examples close to the query examples. To address this issue, we present instance-wise hard Negative Example Generation for Contrastive learning in Unpaired image-to-image Translation (NEGCUT). Specifically, we train a generator to produce negative examples online. The generator is novel from two perspectives: 1) it is instance-wise which means that the generated examples are based on the input image, and 2) it can generate hard negative examples since it is trained with an adversarial loss. With the generator, the performance of unpaired image-to-image translation is significantly improved. Experiments on three benchmark datasets demonstrate that the proposed NEGCUT framework achieves state-of-the-art performance compared to previous methods.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2021
- DOI:
- 10.48550/arXiv.2108.04547
- arXiv:
- arXiv:2108.04547
- Bibcode:
- 2021arXiv210804547W
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition
- E-Print:
- Accepted by ICCV 2021