Extreme values of derivatives of the Riemann zeta function
Abstract
It is proved that if $T$ is sufficiently large, then uniformly for all positive integers $\ell \leqslant (\log T) / (\log_2 T)$, we have \begin{equation*} \max_{T\leqslant t\leqslant 2T}\left|\zeta^{(\ell)}\Big(1+it\Big)\right| \geqslant e^{\gamma}\cdot \ell^{\ell}\cdot (\ell+1)^{ -(\ell+1)}\cdot\Big(\log_2 T - \log_3 T + O(1)\Big)^{\ell+1} \,, \end{equation*} where $\gamma$ is the Euler constant. We also establish lower bounds for maximum of $\big|\zeta^{(\ell)}(\sigma+it)\big|$ when $\ell \in \mathbb N $ and $\sigma \in [1/2, \,1)$ are fixed.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2021
- DOI:
- arXiv:
- arXiv:2108.02301
- Bibcode:
- 2021arXiv210802301Y
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- 27 pages