The maximum of the complementary of a semigroup with restricted conditions
Abstract
We consider the set $$\mathcal{A} = \left\{10\cdot a + 11\cdot b \ | \gcd(a,b)=1, a\geq 1, b\geq 2a+1 \right\}.$$ We will prove that $\mathcal{A}$ is unbounded and that there exists a natural number $M\notin \mathcal{A}$ for which $$\left\{M+m:m\geq 1,m\in\mathbb N\right\}\subset \mathcal{A}.$$ Indeed, such number is $M = 1674$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2021
- DOI:
- arXiv:
- arXiv:2108.02004
- Bibcode:
- 2021arXiv210802004L
- Keywords:
-
- Mathematics - General Mathematics;
- 39A23;
- 11A99;
- 20M99