Galois correspondence for group-type partial actions of groupoids
Abstract
Let $\operatorname{G}$ be a finite groupoid and $\alpha=(S_g,\alpha_g)_{g\in \operatorname{G}}$ a unital partial action of group-type of $\operatorname{G}$ on a commutative ring $S=\oplus_{y\in\operatorname{G}_0}S_y$. We shall prove a Galois correspondence between a class of wide subgroupoids of $\operatorname{G}$ and a class of subrings of $S$. We recover known results for global groupoid actions and we give several examples to illustrate the correspondence.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2021
- DOI:
- arXiv:
- arXiv:2108.01180
- Bibcode:
- 2021arXiv210801180B
- Keywords:
-
- Mathematics - Rings and Algebras
- E-Print:
- 22 pages