An approximation for the capture radius of gaseous protoplanets
Abstract
Determining the heavy-element accretion rate of growing giant planets is crucial for understanding their formation and bulk composition. The solid (heavy-element) accretion rate should be carefully modelled during the various stages of giant planet formation and therefore the planetary capture radius must be determined. In some simulations that model the heavy-element accretion rate, such as in N-body simulations, the presence of the gaseous envelope is either neglected or treated in an oversimplified manner. In this paper, we present an approximation for the capture radius that does not require the numerical solution of the stellar structure equations. Our approximation for the capture radius works extremely well for various planetesimal sizes and compositions. We show that the commonly assumed constant density assumption for inferring the capture radius leads to a large error in the calculated capture radius and we therefore suggest that our approximation should be implemented in future simulations.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- October 2021
- DOI:
- 10.1093/mnrasl/slab089
- arXiv:
- arXiv:2107.12764
- Bibcode:
- 2021MNRAS.507L..62V
- Keywords:
-
- methods: numerical;
- planet-disc interactions;
- planets and satellites: formation;
- gaseous planets;
- protoplanetary discs;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- doi:10.1093/mnrasl/slab089