Entropy Regularized Motion Planning via Stein Variational Inference
Abstract
Many Imitation and Reinforcement Learning approaches rely on the availability of expert-generated demonstrations for learning policies or value functions from data. Obtaining a reliable distribution of trajectories from motion planners is non-trivial, since it must broadly cover the space of states likely to be encountered during execution while also satisfying task-based constraints. We propose a sampling strategy based on variational inference to generate distributions of feasible, low-cost trajectories for high-dof motion planning tasks. This includes a distributed, particle-based motion planning algorithm which leverages a structured graphical representations for inference over multi-modal posterior distributions. We also make explicit connections to both approximate inference for trajectory optimization and entropy-regularized reinforcement learning.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2021
- DOI:
- arXiv:
- arXiv:2107.05146
- Bibcode:
- 2021arXiv210705146L
- Keywords:
-
- Computer Science - Robotics
- E-Print:
- RSS 2021 Workshop on Integrating Planning and Learning