Microscopic origin of the high thermoelectric figure of merit of n -doped SnSe
Abstract
Excellent thermoelectric performance in the out-of-layer n -doped SnSe has been observed experimentally [Chang et al., Science 360, 778 (2018), 10.1126/science.aaq1479]. However, a first-principles investigation of the dominant scattering mechanisms governing all thermoelectric transport properties is lacking. In the present paper, by applying extensive first-principles calculations of electron-phonon coupling associated with parameterized calculation of the scattering by ionized impurities, we investigate the reasons behind the superior figure of merit as well as the enhancement of z T above 600 K in n -doped out-of-layer SnSe, as compared to p -doped SnSe with similar carrier densities. For the n -doped case, the relaxation time is dominated by ionized impurity scattering and increases with temperature, a feature that maintains the power factor at high values at higher temperatures and simultaneously causes the carrier thermal conductivity at zero electric current (κel) to decrease faster for higher temperatures, leading to an ultrahigh-z T =3.1 at 807 K. We rationalize the roles played by κel and κ0 (the thermal conductivity due to carrier transport under isoelectrochemical conditions) in the determination of z T . Our results show the ratio between κ0 and the lattice thermal conductivity indeed corresponds to the upper limit for z T , whereas the difference between calculated z T and the upper limit is proportional to κel.
- Publication:
-
Physical Review B
- Pub Date:
- September 2021
- DOI:
- 10.1103/PhysRevB.104.115204
- arXiv:
- arXiv:2107.02957
- Bibcode:
- 2021PhRvB.104k5204C
- Keywords:
-
- Condensed Matter - Materials Science
- E-Print:
- 12 pages, 5 figures