Monomial ideals and the failure of the Strong Lefschetz property
Abstract
We give a sharp lower bound for the Hilbert function in degree $d$ of artinian quotients $\Bbbk[x_1,\ldots,x_n]/I$ failing the Strong Lefschetz property, where $I$ is a monomial ideal generated in degree $d \geq 2$. We also provide sharp lower bounds for other classes of ideals, and connect our result to the classification of the Hilbert functions forcing the Strong Lefschetz property by Zanello and Zylinski.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2021
- DOI:
- arXiv:
- arXiv:2107.00497
- Bibcode:
- 2021arXiv210700497A
- Keywords:
-
- Mathematics - Commutative Algebra;
- 13A02;
- 13D40;
- 13E10
- E-Print:
- Collect. Math. 73 (2022), 383--390