Asymptotic Properties of Monte Carlo Methods in Elliptic PDE-Constrained Optimization under Uncertainty
Abstract
Monte Carlo approximations for random linear elliptic PDE constrained optimization problems are studied. We use empirical process theory to obtain best possible mean convergence rates $O(n^{-\frac{1}{2}})$ for optimal values and solutions, and a central limit theorem for optimal values. The latter allows to determine asymptotically consistent confidence intervals by using resampling techniques.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2021
- DOI:
- 10.48550/arXiv.2106.06347
- arXiv:
- arXiv:2106.06347
- Bibcode:
- 2021arXiv210606347R
- Keywords:
-
- Mathematics - Optimization and Control;
- Mathematics - Numerical Analysis;
- Mathematics - Probability;
- 49J20 49J55 60F17 65C05 90C15 35R60