Solving Quadratic and Cubic Diophantine Equations using 2-adic Valuation Trees
Abstract
For fixed integers $D \geq 0$ and $c \geq 3$, we demonstrate how to use $2$-adic valuation trees of sequences to analyze Diophantine equations of the form $x^2+D=2^cy$ and $x^3+D=2^cy$, for $y$ odd. Further, we show for what values $D \in \mathbb{Z}^+$, the numbers $x^3+D$ will generate infinite valuation trees, which lead to infinite solutions to the above Diophantine equations.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2021
- DOI:
- arXiv:
- arXiv:2105.03352
- Bibcode:
- 2021arXiv210503352B
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- 18 pages, 10 figures, 3 tables