Real fundamental Chevalley involutions and conjugacy classes
Abstract
Let $\mathsf G$ be a connected reductive linear algebraic group defined over $\mathbb R$, and let $C: \mathsf G\rightarrow \mathsf G$ be a fundamental Chevalley involution. We show that for every $g\in \mathsf G(\mathbb R)$, $C(g)$ is conjugate to $g^{-1}$ in the group $\mathsf G(\mathbb R)$. Similar result on the Lie algebras is also obtained.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2021
- DOI:
- arXiv:
- arXiv:2105.01273
- Bibcode:
- 2021arXiv210501273H
- Keywords:
-
- Mathematics - Representation Theory;
- 20G20