Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras
Abstract
Let $A$ be an unital alternative $*$-algebra. Assume that $A$ contains a nontrivial symmetric idempotent element $e$ which satisfies $xA \cdot e = 0$ implies $x = 0$ and $xA \cdot (1_A - e) = 0$ implies $x = 0$. In this paper, it is shown that $\Phi$ is a nonlinear $*$-Jordan-type derivation on A if and only if $\Phi$ is an additive $*$-derivation. As application, we get a result on alternative $W^{*}$-algebras.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2021
- DOI:
- arXiv:
- arXiv:2105.00955
- Bibcode:
- 2021arXiv210500955J
- Keywords:
-
- Mathematics - Rings and Algebras;
- Mathematics - Operator Algebras;
- 17D05;
- 47B47
- E-Print:
- 18 pages