Bird-Area Water-Bodies Dataset (BAWD) and Predictive AI Model for Avian Botulism Outbreak (AVI-BoT)
Abstract
Avian botulism is a paralytic bacterial disease in birds often leading to high fatality. In-vitro diagnostic techniques such as Mouse Bioassay, ELISA, PCR are usually non-preventive, post-mortem in nature, and require invasive sample collection from affected sites or dead birds. In this study, we build a first-ever multi-spectral, remote-sensing imagery based global Bird-Area Water-bodies Dataset (BAWD) (i.e. fused satellite images of warm-water lakes/marshy-lands or similar water-body sites that are important for avian fauna) backed by on-ground reporting evidence of outbreaks. BAWD consists of 16 topographically diverse global sites monitored over a time-span of 4 years (2016-2021). We propose a first-ever Artificial Intelligence based (AI) model to predict potential outbreak of Avian botulism called AVI-BoT (Aerosol Visible, Infra-red (NIR/SWIR) and Bands of Thermal). We also train and investigate a simpler (5-band) Causative-Factor model (based on prominent physiological factors reported in literature) to predict Avian botulism. AVI-BoT demonstrates a training accuracy of 0.96 and validation accuracy of 0.989 on BAWD, far superior in comparison to our model based on causative factors. We also perform an ablation study and perform a detailed feature-space analysis. We further analyze three test case study locations - Lower Klamath National Wildlife Refuge and Langvlei and Rondevlei lakes where an outbreak had occurred, and Pong Dam where an outbreak had not occurred and confirm predictions with on-ground reportings. The proposed technique presents a scale-able, low-cost, non-invasive methodology for continuous monitoring of bird-habitats against botulism outbreaks with the potential of saving valuable fauna lives.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2021
- DOI:
- 10.48550/arXiv.2105.00924
- arXiv:
- arXiv:2105.00924
- Bibcode:
- 2021arXiv210500924B
- Keywords:
-
- Quantitative Biology - Quantitative Methods;
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Machine Learning