The Differential Equations of Gravity-free Double Pendulum: Lauricella Hypergeometric Solutions and Their Inversion
Abstract
This paper solves in closed form the system of ODEs ruling the 2D motion of a gravity free double pendulum (GFDP), not subjected to any force. In such a way its movement is governed by the initial conditions only. The relevant strongly non linear ODEs have been put back to hyperelliptic quadratures which, through the Integral Representation Theorem (IRT), are driven to the Lauricella hypergeometric functions. We compute time laws and trajectories of both point masses forming the GFDP in explicit closed form. Suitable sample problems are carried out in order to prove the method effectiveness.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2021
- DOI:
- arXiv:
- arXiv:2104.13211
- Bibcode:
- 2021arXiv210413211B
- Keywords:
-
- Physics - Classical Physics;
- Physics - Applied Physics
- E-Print:
- Asian Research Journal of Mathematics 2022, 18(3):1-18