Characterization of coextensive varieties of universal algebras II
Abstract
A coextensive category can be defined as a category $\mathcal{C}$ with finite products such that for each pair $X,Y$ of objects in $\mathcal{C}$, the canonical functor $\times\colon X/\mathcal{C} \times Y/\mathcal{C} \to (X \times Y)/\mathcal{C}$ is an equivalence. We give a syntactical characterization of coextensive varieties of universal algebras. This paper is an updated version of the pre-print arXiv:2008.03474
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2021
- DOI:
- 10.48550/arXiv.2104.12188
- arXiv:
- arXiv:2104.12188
- Bibcode:
- 2021arXiv210412188B
- Keywords:
-
- Mathematics - Category Theory;
- 18A30;
- 08B05
- E-Print:
- This paper is an updated version of the pre-print arXiv:2008.03474