Asymptotic distributions for weighted power sums of extreme values
Abstract
Let $X_{1,n}\le\cdots\le X_{n,n}$ be the order statistics of $n$ independent random variables with a common distribution function $F$ having right heavy tail with tail index $\gamma$. Given known constants $d_{i,n}$, $1\le i\le n$, consider the weighted power sums $\sum^{k_n}_{i=1}d_{n+1-i,n}\log^pX_{n+1-i,n}$, where $p>0$ and the $k_n$ are positive integers such that $k_n\to\infty$ and $k_n/n\to0$ as $n\to\infty$. Under some constraints on the weights $d_{i,n}$, we prove asymptotic normality for the power sums over the whole heavy-tail model. We apply the obtained result to construct a new class of estimators for the parameter $\gamma$.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2021
- DOI:
- 10.48550/arXiv.2104.04863
- arXiv:
- arXiv:2104.04863
- Bibcode:
- 2021arXiv210404863A
- Keywords:
-
- Mathematics - Probability;
- Mathematics - Statistics Theory;
- 60F05;
- 62G32