The $q,t$-symmetry of the generalized $q,t$-Catalan number $C_{(k_1,k_2,k_3)}(q,t)$ and $C_{(k,k,k,k)}(q,t)$
Abstract
We give two proofs of the $q,t$-symmetry of the generalized $q,t$-Catalan number $C_{\vec{k}}(q,t)$ for $\vec{k}=(k_1,k_2,k_3)$. One is by using MacMahon's partition analysis as we proposed; the other is a direct bijection. We also prove $C_{(k,k,k,k)}(q,t) = C_{(k,k,k,k)}(t,q)$ by using MacMahon's partition analysis.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2021
- DOI:
- 10.48550/arXiv.2104.04338
- arXiv:
- arXiv:2104.04338
- Bibcode:
- 2021arXiv210404338X
- Keywords:
-
- Mathematics - Combinatorics
- E-Print:
- 17 pages, 2 figures