On Arroyo-Figueroa's Proof that $\mathrm{P} \neq \mathrm{NP}$
Abstract
We critique Javier Arroyo-Figueroa's paper titled ``The existence of the Tau one-way functions class as a proof that $\mathrm{P} \neq \mathrm{NP}$,'' which claims to prove $\mathrm{P} \neq \mathrm{NP}$ by showing the existence of a class of one-way functions. We summarize our best interpretation of Arroyo-Figueroa's argument, and show why it fails to prove the existence of one-way functions. Hence, we show that Arroyo-Figueroa fails to prove $\mathrm{P} \neq \mathrm{NP}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2021
- DOI:
- 10.48550/arXiv.2103.15246
- arXiv:
- arXiv:2103.15246
- Bibcode:
- 2021arXiv210315246J
- Keywords:
-
- Computer Science - Computational Complexity;
- Mathematics - Combinatorics
- E-Print:
- 5 pages