On the largest prime divisor of $n!+1$
Abstract
For an integer $m >1$, we denote by $P(m)$ the largest prime divisor of $m$. We prove that $\limsup_{n \rightarrow +\infty} P(n!+1)/n \geqslant 1+9\log 2>7.238$, which improves a result of Stewart. More generally, for any nonzero polynomial $f(X)$ with integer coefficients, we show that $\limsup_{n \rightarrow +\infty} P(n!+f(n))/n \geqslant 1+9\log2$. This improves a result of Luca and Shparlinski. These improvements come from an additional combinatoric idea to the works mentioned above.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2021
- DOI:
- 10.48550/arXiv.2103.14894
- arXiv:
- arXiv:2103.14894
- Bibcode:
- 2021arXiv210314894L
- Keywords:
-
- Mathematics - Number Theory;
- 11D75;
- 11J25
- E-Print:
- 11 pages