Zeros of Rankin-Selberg $L$-functions in families
Abstract
Let $\mathfrak{F}_n$ be the set of all cuspidal automorphic representations $\pi$ of $\mathrm{GL}_n$ with unitary central character over a number field $F$. We prove the first unconditional zero density estimate for the set $\mathcal{S}=\{L(s,\pi\times\pi')\colon\pi\in\mathfrak{F}_n\}$ of Rankin-Selberg $L$-functions, where $\pi'\in\mathfrak{F}_{n'}$ is fixed. We use this density estimate to establish (i) a hybrid-aspect subconvexity bound at $s=\frac{1}{2}$ for almost all $L(s,\pi\times\pi')\in \mathcal{S}$, (ii) a strong on-average form of effective multiplicity one for almost all $\pi\in\mathfrak{F}_n$, and (iii) a positive level of distribution for $L(s,\pi\times\tilde{\pi})$, in the sense of Bombieri-Vinogradov, for each $\pi\in\mathfrak{F}_n$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2021
- DOI:
- arXiv:
- arXiv:2103.05634
- Bibcode:
- 2021arXiv210305634H
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- 32 pages. Significant revision based on referee comments