A Hörmander-Mikhlin multiplier theory for free groups and amalgamated free products of von Neumann algebras
Abstract
We establish a platform to transfer $L_p$-completely bounded maps on tensor products of von Neumann algebras to $L_p$-completely bounded maps on the corresponding amalgamated free products. As a consequence, we obtain a Hörmander-Mikhlin multiplier theory for free products of groups. Let $\mathbb{F}_\infty$ be a free group on infinite generators $\{g_1, g_2,\cdots\}$. Given $d\ge1$ and a bounded symbol $m$ on $\mathbb{Z}^d$ satisfying the classical Hörmander-Mikhlin condition, the linear map $M_m:\mathbb{C}[\mathbb{F}_\infty]\to \mathbb{C}[\mathbb{F}_\infty]$ defined by $\lambda(g)\mapsto m(k_1,\cdots, k_d)\lambda(g)$ for $g=g_{i_1}^{k_1}\cdots g_{i_n}^{k_n}\in\mathbb{F}_\infty$ in reduced form (with $k_l=0$ in $m(k_1,\cdots, k_d)$ for $l>n$), extends to a complete bounded map on $L_p(\widehat{\mathbb{F}}_\infty)$ for all $1<p<\infty$, where $\widehat{\mathbb{F}}_\infty$ is the group von Neumann algebra of $\mathbb{F}_\infty$. A similar result holds for any free product of discrete groups.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2021
- DOI:
- arXiv:
- arXiv:2103.04368
- Bibcode:
- 2021arXiv210304368M
- Keywords:
-
- Mathematics - Operator Algebras;
- Mathematics - Functional Analysis;
- Primary: 46L07;
- 46L50. Secondary: 46L52;
- 46L54