$3$-Principalization over $S_3$-fields
Abstract
Let $p\equiv 1\,(\mathrm{mod}\,9)$ be a prime number and $\zeta_3$ be a primitive cube root of unity. Then $\mathrm{k}=\mathbb{Q}(\sqrt[3]{p},\zeta_3)$ is a pure metacyclic field with group $\mathrm{Gal}(\mathrm{k}/\mathbb{Q})\simeq S_3$. In the case that $\mathrm{k}$ possesses a $3$-class group $C_{\mathrm{k},3}$ of type $(9,3)$, the capitulation of $3$-ideal classes of $\mathrm{k}$ in its unramified cyclic cubic extensions is determined, and conclusions concerning the maximal unramified pro-$3$-extension $\mathrm{k}_3^{(\infty)}$ of $\mathrm{k}$ are drawn.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2021
- DOI:
- arXiv:
- arXiv:2103.04184
- Bibcode:
- 2021arXiv210304184A
- Keywords:
-
- Mathematics - Number Theory;
- 11R37;
- 11R29;
- 11R32;
- 11R20;
- 11R16;
- 20D15;
- 20E22;
- 20F05
- E-Print:
- 23 pages, 7 Figures, 1 Table