S-Matrix and Anomaly of de Sitter
Abstract
S-matrix formulation of gravity excludes de Sitter vacua. In particular, this is organic to string theory. The S-matrix constraint is enforced by an anomalous quantum break-time proportional to the inverse values of gravitational and/or string couplings. Due to this, de Sitter can satisfy the conditions for a valid vacuum only at the expense of trivializing the graviton and closed-string S-matrices. At non-zero gravitational and string couplings, de Sitter is deformed by corpuscular 1/N effects, similarly to Witten-Veneziano mechanism in QCD with N colors. In this picture, an S-matrix formulation of Einstein gravity, such as string theory, nullifies an outstanding cosmological puzzle. We discuss possible observational signatures which are especially interesting in theories with a large number of particle species. Species can enhance the primordial quantum imprints to potentially observable level even if the standard inflaton fluctuations are negligible.
- Publication:
-
Symmetry
- Pub Date:
- December 2020
- DOI:
- 10.3390/sym13010003
- arXiv:
- arXiv:2012.02133
- Bibcode:
- 2020Symm...13....3D
- Keywords:
-
- S-matrix;
- de Sitter;
- quantum gravity;
- High Energy Physics - Theory;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- General Relativity and Quantum Cosmology;
- High Energy Physics - Phenomenology
- E-Print:
- 12 pages