A nice involution for multivariable polynomial rings
Abstract
The principal minors of the Toeplitz matrix $\left( x_{i-j+1}\right)_{1\le i,j,\le n}$, where $x_0=1, x_k=0$ if $k\le -1$, directly determine an involution of the polynomial ring $R[x_1, ... ,x_n]$ over any commutative ring $R$.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2020
- DOI:
- 10.48550/arXiv.2011.14921
- arXiv:
- arXiv:2011.14921
- Bibcode:
- 2020arXiv201114921S
- Keywords:
-
- Mathematics - Commutative Algebra;
- Mathematics - Rings and Algebras;
- 2020: 13;
- 15