Problems using deep generative models for probabilistic audio source separation
Abstract
Recent advancements in deep generative modeling make it possible to learn prior distributions from complex data that subsequently can be used for Bayesian inference. However, we find that distributions learned by deep generative models for audio signals do not exhibit the right properties that are necessary for tasks like audio source separation using a probabilistic approach. We observe that the learned prior distributions are either discriminative and extremely peaked or smooth and non-discriminative. We quantify this behavior for two types of deep generative models on two audio datasets.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2020
- DOI:
- arXiv:
- arXiv:2011.01761
- Bibcode:
- 2020arXiv201101761F
- Keywords:
-
- Computer Science - Machine Learning;
- Computer Science - Sound;
- Electrical Engineering and Systems Science - Audio and Speech Processing
- E-Print:
- 1st I Can't Believe It's Not Better Workshop (ICBINB @ NeurIPS 2020), Vancouver, Canada