Asymptotic evaluation of $\int_0^\infty\left(\frac{\sin x}{x}\right)^n\;dx$
Abstract
We consider the integral $\int_0^\infty\left(\frac{\sin x}{x}\right)^n\;dx$ as a function of the positive integer $n$. We show that there exists an asymptotic series in $\frac{1}{n}$ and compute the first terms of this series together with an explicit error bound.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2020
- DOI:
- 10.48550/arXiv.2010.11759
- arXiv:
- arXiv:2010.11759
- Bibcode:
- 2020arXiv201011759S
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- 26D15;
- 33F05
- E-Print:
- Commun. Korean Math. Soc. 35 (2020), 1193-1202