Mining the geodesic equation for scattering data
Abstract
The geodesic equation encodes test-particle dynamics at arbitrary gravitational coupling, hence retaining all orders in the post-Minkowskian (PM) expansion. Here we explore what geodesic motion can tell us about dynamical scattering in the presence of perturbatively small effects such as tidal distortion and higher derivative corrections to general relativity. We derive an algebraic map between the perturbed geodesic equation and the leading PM scattering amplitude at arbitrary mass ratio. As examples, we compute formulas for amplitudes and isotropic gauge Hamiltonians for certain infinite classes of tidal operators such as electric or magnetic Weyl to any power, and for higher derivative corrections to gravitationally interacting bodies with or without electric charge. Finally, we present a general method for calculating closed-form expressions for amplitudes and isotropic gauge Hamiltonians in the test-particle limit at all orders in the PM expansion.
- Publication:
-
Physical Review D
- Pub Date:
- January 2021
- DOI:
- 10.1103/PhysRevD.103.024030
- arXiv:
- arXiv:2010.08568
- Bibcode:
- 2021PhRvD.103b4030C
- Keywords:
-
- High Energy Physics - Theory;
- General Relativity and Quantum Cosmology;
- High Energy Physics - Phenomenology
- E-Print:
- 20 pages, 2 figures, 1 ancillary file