On optimal recovery in $L_2$
Abstract
We prove that the optimal error of recovery in the $L_2$ norm of functions from a class $\bF$ can be bounded above by the value of the Kolmogorov width of $\bF$ in the uniform norm. We demonstrate on a number of examples of $\bF$ from classes of functions with mixed smoothness that the obtained inequality provides a powerful tool for estimating errors of optimal recovery.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2020
- DOI:
- 10.48550/arXiv.2010.03103
- arXiv:
- arXiv:2010.03103
- Bibcode:
- 2020arXiv201003103T
- Keywords:
-
- Mathematics - Numerical Analysis;
- Mathematics - Functional Analysis