The modulus of the Fourier transform on a sphere determines 3-dimensional convex polytopes
Abstract
Let $\mathcal{P}$ and $\mathcal{P}'$ be $3$-dimensional convex polytopes in $\mathbb{R}^3$ and $S \subseteq \mathbb{R}^3$ be a non-empty intersection of an open set with a sphere. As a consequence of a somewhat more general result it is proved that $\mathcal{P}$ and $\mathcal{P}'$ coincide up to translation and/or reflection in a point if $|\int_{\mathcal{P}} e^{-i\mathbf{s}\cdot\mathbf{x}} \,\mathbf{dx}| = |\int_{\mathcal{P}'} e^{-i\mathbf{s}\cdot\mathbf{x}} \,\mathbf{dx}|$ for all $\mathbf{s} \in S$. This can be applied to the field of crystallography regarding the question whether a nanoparticle modelled as a convex polytope is uniquely determined by the intensities of its X-ray diffraction pattern on the Ewald sphere.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2020
- DOI:
- 10.48550/arXiv.2009.10414
- arXiv:
- arXiv:2009.10414
- Bibcode:
- 2020arXiv200910414E
- Keywords:
-
- Mathematics - Metric Geometry;
- Mathematics - Classical Analysis and ODEs;
- 42B10;
- 52B10;
- 52B11;
- 81U40
- E-Print:
- 12 pages, 1 figure