Products of quadratic residues and related identities
Abstract
In this paper we study products of quadratic residues modulo odd primes and prove some identities involving quadratic residues. For instance, let $p$ be an odd prime. We prove that if $p\equiv5\pmod8$, then $$\prod_{0<x<p/2,(\frac{x}{p})=1}x\equiv(-1)^{1+r}\pmod p,$$ where $(\frac{\cdot}{p})$ is the Legendre symbol and $r$ is the number of $4$-th power residues modulo $p$ in the interval $(0,p/2)$. Our work involves class number formula, quartic Gauss sums, Stickelberger's congruence and values of Dirichlet L-series at negative integers.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2020
- DOI:
- 10.48550/arXiv.2009.03620
- arXiv:
- arXiv:2009.03620
- Bibcode:
- 2020arXiv200903620W
- Keywords:
-
- Mathematics - Number Theory