Analytic Eigensystems for Isotropic Membrane Energies
Abstract
We extend the approach of [Smith et al. 2019] to derive analytical expressions for the eigenvalues and eigenmatrices of an isotropic membrane energy density function $\psi : \mathbb{R}^{3x2} \to \mathbb{R}$. Clamping the eigenvalue expressions to be positive for each quadrature point of a finite element membrane simulation guarantees a positive semi-definite Hessian for the full discrete membrane energy, enabling an efficient Newton-type simulation.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2020
- DOI:
- 10.48550/arXiv.2008.10698
- arXiv:
- arXiv:2008.10698
- Bibcode:
- 2020arXiv200810698P
- Keywords:
-
- Mathematics - Numerical Analysis
- E-Print:
- 4 page technical report without figures