Sobolev spaces of vector-valued functions
Abstract
We are concerned here with Sobolev-type spaces of vector-valued functions. For an open subset Ω⊂RN and a Banach space V, we compare the classical Sobolev space W1,p(Ω,V) with the so-called Sobolev-Reshetnyak space R1,p(Ω,V). We see that, in general, W1,p(Ω,V) is a closed subspace of R1,p(Ω,V). As a main result, we obtain that W1,p(Ω,V)=R1,p(Ω,V) if, and only if, the Banach space V has the Radon-Nikodým property
- Publication:
-
Revista Real Acad. Ciencias Exact. Fis. Nat. Madrid
- Pub Date:
- January 2021
- DOI:
- 10.1007/s13398-020-00959-4
- arXiv:
- arXiv:2008.03040
- Bibcode:
- 2021RvMad.115...19C
- Keywords:
-
- Sobolev spaces;
- Vector-valued functions;
- 46E35;
- 46E40;
- 46B22;
- Mathematics - Functional Analysis;
- 46E35;
- 46E40;
- 46B22
- E-Print:
- doi:10.1007/s13398-020-00959-4