The navigation problems and the curvature properties on conic Kropina manifolds
Abstract
In this paper, we study navigation problems on conic Kropina manifolds. Let $F(x, y)$ be a conic Kropina metric on an $n$-dimensional manifold $M$ and $V$ be a conformal vector field on $(M, F)$ with $F(x, - V_{x})\leq 1$. Let $\widetilde{F}= \widetilde{F} (x,y)$ be the solution of the navigation problem with navigation data $(F, V)$. We prove that $\widetilde{F}$ must be either a Randers metric or a Kropina metric. Then we establish the relationships between some curvature properties of $F$ and the corresponding properties of the new metric $\widetilde{F}$, which involve S-curvature, flag curvature and Ricci curvature.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2020
- DOI:
- 10.48550/arXiv.2006.10557
- arXiv:
- arXiv:2006.10557
- Bibcode:
- 2020arXiv200610557C
- Keywords:
-
- Mathematics - Differential Geometry;
- 53B40;
- 53C60