More bijections for Entringer and Arnold families
Abstract
The Euler number $E_n$ (resp. Entringer number $E_{n,k}$) enumerates the alternating (down-up) permutations of $\{1,\dots,n\}$ (resp. starting with $k$). The Springer number $S_n$ (resp. Arnold number $S_{n,k}$) enumerates the type $B$ alternating permutations (resp. starting with $k$). In this paper, using bijections we first derive the counterparts in {\em André permutations} and {\em Simsun permutations} for the Entringer numbers $(E_{n,k})$, and then the counterparts in {\em signed André permutations} and {\em type $B$ increasing 1-2 trees} for the Arnold numbers $(S_{n,k})$.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2020
- DOI:
- 10.48550/arXiv.2006.00507
- arXiv:
- arXiv:2006.00507
- Bibcode:
- 2020arXiv200600507S
- Keywords:
-
- Mathematics - Combinatorics;
- 05A05;
- 05A15;
- 05A19
- E-Print:
- 21 pages, 3 figures, 6 tables