ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed Quality Labeling Using Neural Networks
Abstract
Electrocardiogram (ECG) detection and delineation are key steps for numerous tasks in clinical practice, as ECG is the most performed non-invasive test for assessing cardiac condition. State-of-the-art algorithms employ digital signal processing (DSP), which require laborious rule adaptation to new morphologies. In contrast, deep learning (DL) algorithms, especially for classification, are gaining weight in academic and industrial settings. However, the lack of model explainability and small databases hinder their applicability. We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework. For this purpose, we adapted and validated the most used neural network architecture for image segmentation, the U-Net, to one-dimensional data. The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings, for single- and multi-lead scenarios. To alleviate data scarcity, data regularization techniques such as pre-training with low-quality data labels, performing ECG-based data augmentation and applying strong model regularizers to the architecture were attempted. Other variations in the model's capacity (U-Net's depth and width), alongside the application of state-of-the-art additions, were evaluated. These variations were exhaustively validated in a 5-fold cross-validation manner. The best performing configuration reached precisions of 90.12%, 99.14% and 98.25% and recalls of 98.73%, 99.94% and 99.88% for the P, QRS and T waves, respectively, on par with DSP-based approaches. Despite being a data-hungry technique trained on a small dataset, DL-based approaches demonstrate to be a viable alternative to traditional DSP-based ECG processing techniques.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2020
- DOI:
- 10.48550/arXiv.2005.05236
- arXiv:
- arXiv:2005.05236
- Bibcode:
- 2020arXiv200505236J
- Keywords:
-
- Computer Science - Machine Learning;
- Electrical Engineering and Systems Science - Signal Processing;
- Statistics - Machine Learning
- E-Print:
- 15 pages, 7 figures, 3 tables