Effective Generation of Right-Angled Artin Groups in Mapping Class Groups
Abstract
We show that given a collection $X=\{f_1$, \ldots , $f_m\}$ of pure mapping classes on a surface $S$, there is an explicit constant N, depending only on $X$, such that their Nth powers $\{f_1^N$, \ldots , $f_m^N\}$ generate the expected right-angled Artin subgroup of MCG($S$). Moreover, we show that these subgroups are undistorted.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2020
- DOI:
- 10.48550/arXiv.2004.13585
- arXiv:
- arXiv:2004.13585
- Bibcode:
- 2020arXiv200413585R
- Keywords:
-
- Mathematics - Geometric Topology;
- Mathematics - Group Theory
- E-Print:
- 18 pages, 3 figures. Comments Welcome!