Properties of analogues of Frobenius powers of ideals
Abstract
Let $R=\mathbb{K}[X_1, \ldots , X_n ]$ be a polynomial ring over a field $\mathbb{K}$. We introduce an endomorphism $\mathcal{F}^{[m]}: R \rightarrow R $ and denote the image of an ideal $I$ of $R$ via this endomorphism as $I^{[m]}$ and call it to be the $m$ \textit{-th square power} of $I$. In this article, we study some homological invariants of $I^{[m]}$ such as regularity, projective dimension, associated primes and depth for some families of ideals e.g. monomial ideals.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2020
- DOI:
- 10.48550/arXiv.2004.06597
- arXiv:
- arXiv:2004.06597
- Bibcode:
- 2020arXiv200406597C
- Keywords:
-
- Mathematics - Commutative Algebra;
- 13A35;
- 13D02;
- 13F55
- E-Print:
- 9 pages