The Franzese-Stanley Coarse Grained Model for Hydration Water
Abstract
Water modeling is a challenging problem. Its anomalies are difficult to reproduce, promoting the proliferation of a large number of computational models, among which researchers select the most appropriate for the property they study. In this chapter, we introduce a coarse-grained model introduced by Franzese and Stanley (FS) that accounts for the many-body interactions of water. We review mean-field calculations and Monte Carlo simulations on water monolayers for a wide range of pressures and temperatures, including extreme conditions. The results show the presence of two dynamic crossovers and explain the origin of diffusion anomalies. Moreover, the model shows that all the different scenarios, proposed in the last decades as alternative explanations of the experimental anomalies of water, can be related by the fine-tuning of the many-body (cooperative) interaction. Once this parameter is set from the experiments, the FS model predicts a phase transition between two liquids with different densities and energies in the supercooled water region, ending in a liquid-liquid critical point. From this critical point stems a liquid-liquid Widom line, i.e., the locus of maxima of the water correlation length, that in the FS model can be directly calculated. The results are consistent with the extrapolations from experiments. Furthermore, they agree with those from atomistic models but make predictions over a much wider thermodynamic region, allowing for a better interpretation of the available experimental data. All these findings provide a coherent picture of the properties of water and confirm the validity of the FS model that has proved to be useful for large-scale simulations of biological systems.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2020
- DOI:
- arXiv:
- arXiv:2004.03646
- Bibcode:
- 2020arXiv200403646C
- Keywords:
-
- Condensed Matter - Statistical Mechanics;
- Condensed Matter - Soft Condensed Matter
- E-Print:
- 31 pages, 6 figures