Hairy black-holes in shift-symmetric theories
Abstract
Scalar hair of black holes in theories with a shift symmetry are constrained by the no-hair theorem of Hui and Nicolis, assuming spherical symmetry, time-independence of the scalar field and asymptotic flatness. The most studied counterexample is a linear coupling of the scalar with the Gauss-Bonnet invariant. However, in this case the norm of the shift-symmetry current J2 diverges at the horizon casting doubts on whether the solution is physically sound. We show that this is not an issue since J2 is not a scalar quantity, since Jμ is not a diffinvariant current in the presence of Gauss-Bonnet. The same theory can be written in Horndeski form with a non-analytic function G5∼ log X . In this case the shift-symmetry current is diff-invariant, but contains powers of X in the denominator, so that its divergence at the horizon is again immaterial. We confirm that other hairy solutions in the presence of non-analytic Horndeski functions are pathological, featuring divergences of physical quantities as soon as one departs from time-independence and spherical symmetry. We generalise the no-hair theorem to Beyond Horndeski and DHOST theories, showing that the coupling with Gauss-Bonnet is necessary to have hair.
- Publication:
-
Journal of High Energy Physics
- Pub Date:
- August 2020
- DOI:
- 10.1007/JHEP08(2020)045
- arXiv:
- arXiv:2004.02893
- Bibcode:
- 2020JHEP...08..045C
- Keywords:
-
- Black Holes;
- Classical Theories of Gravity;
- High Energy Physics - Theory;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- General Relativity and Quantum Cosmology
- E-Print:
- 25 pages