Teacher-Student chain for efficient semi-supervised histology image classification
Abstract
Deep learning shows great potential for the domain of digital pathology. An automated digital pathology system could serve as a second reader, perform initial triage in large screening studies, or assist in reporting. However, it is expensive to exhaustively annotate large histology image databases, since medical specialists are a scarce resource. In this paper, we apply the semi-supervised teacher-student knowledge distillation technique proposed by Yalniz et al. (2019) to the task of quantifying prognostic features in colorectal cancer. We obtain accuracy improvements through extending this approach to a chain of students, where each student's predictions are used to train the next student i.e. the student becomes the teacher. Using the chain approach, and only 0.5% labelled data (the remaining 99.5% in the unlabelled pool), we match the accuracy of training on 100% labelled data. At lower percentages of labelled data, similar gains in accuracy are seen, allowing some recovery of accuracy even from a poor initial choice of labelled training set. In conclusion, this approach shows promise for reducing the annotation burden, thus increasing the affordability of automated digital pathology systems.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2020
- DOI:
- arXiv:
- arXiv:2003.08797
- Bibcode:
- 2020arXiv200308797S
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Machine Learning;
- Electrical Engineering and Systems Science - Image and Video Processing;
- Statistics - Machine Learning
- E-Print:
- AI for Affordable Healthcare (AI4AH) workshop at ICLR 2020